Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J AOAC Int ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507699

RESUMO

BACKGROUND: Determining the concentration of nanoparticles in marine organisms is important for evaluating their environmental impact and to assess potential food safety risks to human health. OBJECTIVE: The current work aimed at developing an in-house method based on single particle inductively coupled plasma mass spectrometry suitable for surveillance of nanoparticles in mussels. METHOD: A new low-cost and simple protease mixture was utilized for sample digestion, and a novel open-source data processing was used, establishing detection limits on a statistical basis using false positive and false negative probabilities. The method was validated for 30 and 60 nm gold nanoparticles spiked to mussels as a proxy for seafood. RESULTS: Recoveries were 76-77% for particle mass concentration and 94-101% for particle number concentration. Intermediate precision was 8-9% for particle mass concentration and 7-8% for particle number concentration. Detection limits for size was 18 nm and for concentration 1.7 ng/g and 4.2 x 105 particles/g mussel tissue. CONCLUSION: The performance characteristics of the method were satisfying compared with numeric Codex criteria. Further, the method was applied to titanium-, chromium- and copper-based particles in mussels. HIGHLIGHTS: The method demonstrates a new practical and cost-effective sample treatment and streamlined, transparent and reproducible data treatment for the routine surveillance of NPs in mussels.

2.
Food Chem Toxicol ; 184: 114423, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158035

RESUMO

The production of plastics is rising since they have been invented. Micro, submicro- and nanoplastics are produced intentionally or generated by environmental processes, and constitute ubiquitous contaminants which are ingested orally by consumers. Reported health concerns include intestinal translocation, inflammatory response, oxidative stress and cytotoxicity. Every digestive milieu in the gastrointestinal tract does have an influence on the properties of particles and can cause changes in their effect on biological systems. In this study, we subjected plastic particles of different materials (polylactic acid, polymethylmethacrylate, melamine formaldehyde) and sizes (micro- to nano-range) to a complex artificial digestion model consisting of three intestinal fluid simulants (saliva, gastric and intestinal juice). We monitored the impact of the digestion process on the particles by performing Dynamic Light Scattering, Scanning Electron Microscopy and Asymmetric Flow Field-Flow Fractionation. An in vitro model of the intestinal epithelial barrier was used to monitor cellular effects and translocation behavior of (un)digested particles. In conclusion, artificial digestion decreased cellular interaction and slightly increased transport of all particles across the intestinal barrier. The interaction with organic matter resulted in clear differences in the agglomeration behavior. Moreover, we provide evidence for polymer-, size- and surface-dependent cellular effects of the test particles.


Assuntos
Líquidos Corporais , Poluentes Químicos da Água , Microplásticos , Intestinos , Polímeros , Digestão , Plásticos , Poluentes Químicos da Água/análise
3.
Artigo em Inglês | MEDLINE | ID: mdl-37973296

RESUMO

The ubiquitous pollution of plastic particles in most environmental matrices leads to concern about any potential adverse effects on human health. Most studies on the toxicological effect of nanoplastics has focused on standard particles of polystyrene. In reality humans are exposed to a large variety of different types and sizes of plastic material via oral intake and inhalation. In this study, we investigated the effect of polyethylene terephthalate (PET) nanoplastic particles from ground food containers from a supermarket. The aim was to investigate a possible link between exposure to PET nanoplastics and genotoxic response in a cell model of the human airway epithelial (A549) cells. Further, we investigated the combined effect of PET and chemicals known to alter the cellular redox state, as a model of partially compromised antioxidant defense system. DNA damage was assessed by the alkaline comet assay. The ground PET nanoplastics have a mean hydrodynamic diameter of 136 nm in water. The results showed that PET exposure led to increased reactive oxygen species production (approximately 30 % increase compared to unexposed cells). In addition, exposure to PET nanoplastic increased the level of DNA strand breaks (net increase = 0.10 lesions/106 base pair, 95 % confidence interval: 0.01, 0.18 lesions/106 base pair). Pre- or post-exposure to hydrogen peroxide or buthionine sulfoximine did not lead to a higher level of DNA damage. Overall, the study shows that exposure to PET nanoplastics increases both intracellular reactive oxygen production and DNA damage in A549 cells.


Assuntos
Microplásticos , Polietilenotereftalatos , Humanos , Microplásticos/toxicidade , Células A549 , Polietilenotereftalatos/toxicidade , Embalagem de Alimentos , Dano ao DNA , Pulmão
4.
Sensors (Basel) ; 23(20)2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37896641

RESUMO

This paper presents the concept of a novel adaptable sensing solution currently being developed under the EU Commission-founded PHOTONGATE project. This concept will allow for the quantification of multiple analytes of the same or different nature (chemicals, metals, bacteria, etc.) in a single test with levels of sensitivity and selectivity at/or over those offered by current solutions. PHOTONGATE relies on two core technologies: a biochemical technology (molecular gates), which will confer the specificity and, therefore, the capability to be adaptable to the analyte of interest, and which, combined with porous substrates, will increase the sensitivity, and a photonic technology based on localized surface plasmonic resonance (LSPR) structures that serve as transducers for light interaction. Both technologies are in the micron range, facilitating the integration of multiple sensors within a small area (mm2). The concept will be developed for its application in health diagnosis and food safety sectors. It is thought of as an easy-to-use modular concept, which will consist of the sensing module, mainly of a microfluidics cartridge that will house the photonic sensor, and a platform for fluidic handling, optical interrogation, and signal processing. The platform will include a new optical concept, which is fully European Union Made, avoiding optical fibers and expensive optical components.


Assuntos
Metais , Ressonância de Plasmônio de Superfície , Metais/química , Óptica e Fotônica , Bactérias , Fibras Ópticas
5.
Anal Bioanal Chem ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37709980

RESUMO

Speciation analysis plays a key role in understanding the biological activity and toxicity of an element. So far, classical speciation analysis focused only on the dissolved fraction of an elemental species, whereas nanoparticle forms of analytes are being widely found in consumer and industrial products. A significant contributor to human exposure to nanoparticles is through food into which nanoparticles can be incorporated from endogenous sources or they may be formed naturally in the living organisms. Nanoparticles often undergo changes in the food matrices and upon consumption, in the gastrointestinal tract, which present a significant challenge to their characterisation. Therefore, a combination of both classical and nanoparticle speciation analytical techniques is needed for the characterisation of both dissolved and particulate forms of the chemical species. This article presents and discusses the current trends in analysis of nanoparticle behaviour in the gastrointestinal tract and formation and characterisation of biogenic nanoparticles.

6.
Nanomaterials (Basel) ; 13(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37764576

RESUMO

Due to enhanced properties at the nanoscale, nanomaterials (NMs) have been incorporated into foods, food additives, and food packaging materials. Knowledge gaps related to (but not limited to) fate, transport, bioaccumulation, and toxicity of nanomaterials have led to an expedient need to expand research efforts in the food research field. While classical techniques can provide information on dilute suspensions, these techniques sample a low throughput of nanoparticles (NPs) in the suspension and are limited in the range of the measurement metrics so orthogonal techniques must be used in tandem to fill in measurement gaps. New and innovative characterization techniques have been developed and optimized for employment in food nano-characterization. Single particle inductively coupled plasma mass spectrometry, a high-throughput nanoparticle characterization technique capable of providing vital measurands of NP-containing samples such as size distribution, number concentration, and NP evolution has been employed as a characterization technique in food research since its inception. Here, we offer a short, critical review highlighting existing studies that employ spICP-MS in food research with a particular focus on method validation and trends in sample preparation and spICP-MS methodology. Importantly, we identify and address areas in research as well as offer insights into yet to be addressed knowledge gaps in methodology.

7.
EFSA J ; 21(7): e08106, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37522100

RESUMO

Calcium carbonate (E 170) was re-evaluated in 2011 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of calcium carbonate (E 170) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) and as carry over in line with Annex III, Part 5 Section B to Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators (IBOs) to provide the requested information to complete the risk assessment. The Panel concluded that there is no need for a numerical acceptable daily intake (ADI) for calcium carbonate and that, in principle, there are no safety concern with respect to the exposure to calcium carbonate per se at the currently reported uses and use levels in all age groups of the population, including infants below 16 weeks of age. With respect to the calcium intake resulting from the use of E 170 in food for the general population and infants < 16 weeks of age, the Panel concluded that it contributes only to a small part to the overall calcium dietary exposure. However, the unavoidable presence of aluminium in E 170 is of concern and should be addressed. In addition, the Panel concluded that the technical data provided by the IBO support further amendments of the specifications for E 170 laid down in Commission Regulation (EU) No 231/2012.

8.
Basic Clin Pharmacol Toxicol ; 133(3): 265-278, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37312155

RESUMO

Inhalation studies are the gold standard for assessing the toxicity of airborne materials. They require considerable time, special equipment, and large amounts of test material. Intratracheal instillation is considered a screening and hazard assessment tool as it is simple, quick, allows control of the applied dose, and requires less test material. The particle-induced pulmonary inflammation and acute phase response in mice caused by intratracheal instillation or inhalation of molybdenum disulphide or tungsten particles were compared. End points included neutrophil numbers in bronchoalveolar lavage fluid, Saa3 mRNA levels in lung tissue and Saa1 mRNA levels in liver tissue, and SAA3 plasma protein. Acute phase response was used as a biomarker for the risk of cardiovascular disease. Intratracheal instillation of molybdenum disulphide or tungsten particles did not produce pulmonary inflammation, while molybdenum disulphide particles induced pulmonary acute phase response with both exposure methods and systemic acute phase response after intratracheal instillation. Inhalation and intratracheal instillation showed similar dose-response relationships for pulmonary and systemic acute phase response when molybdenum disulphide was expressed as dosed surface area. Both exposure methods showed similar responses for molybdenum disulphide and tungsten, suggesting that intratracheal instillation can be used for screening particle-induced acute phase response and thereby particle-induced cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Tungstênio , Animais , Camundongos , Reação de Fase Aguda/induzido quimicamente , RNA Mensageiro
9.
Mar Environ Res ; 188: 105975, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37086530

RESUMO

Due to the analytical challenges of detecting and quantifying nanoparticles in seawater, the data on distributions of NPs in the marine environment is limited to qualitative studies or by ensemble measurements subject to various analytical artifacts. Single particle inductively coupled plasma mass spectrometry (SP-ICP-MS) allows determination of individual inorganic NPs at environmentally relevant concentrations, yet only few studies have been conducted on selected elements in surface sea water. Here, a sequential multi-element screening method was developed and implemented to provide a first survey of the horizontal and vertical distributions of inorganic nanoparticles and trace elements in a pristine Norwegian fjord prospect for submarine tailings deposition. Statistical control of false-positive detections while minimizing the size detection limit was ensured using a novel raw signal processing. Scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) gave confirmative and qualitative information regarding particle morphology and composition. Following SP-ICP-MS screening for particles of 16 elements, particulate Al, Fe, Mn, Pb, Si and Ti were found and determined to mass concentrations in ng/L of 1-399, 1-412, below limit of detection (

Assuntos
Nanopartículas Metálicas , Nanopartículas , Oligoelementos , Oligoelementos/análise , Estuários , Chumbo/análise , Microscopia Eletrônica de Varredura
10.
Toxicology ; 485: 153428, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36641057

RESUMO

Molybdenum disulphide (MoS2) is a constituent of many products. To protect humans, it is important to know at what air concentrations it becomes toxic. For this, we tested MoS2 particles by nose-only inhalation in mice. Exposures were set to 13, 50 and 150 mg MoS2/m3 (=8, 30 and 90 mg Mo/m3), corresponding to Low, Mid and High exposure. The duration was 30 min/day, 5 days/week for 3 weeks. Molybdenum lung-deposition levels were estimated based on aerosol particle size distribution measurements, and empirically determined with inductively coupled plasma-mass spectrometry (ICP-MS). Toxicological endpoints were body weight gain, respiratory function, pulmonary inflammation, histopathology, and genotoxicity (comet assay). Acellular reactive oxygen species (ROS) production was also determined. The aerosolised MoS2 powder had a mean aerodynamic diameter of 800 nm, and a specific surface area of 8.96 m2/g. Alveolar deposition of MoS2 in lung was estimated at 7, 27 and 79 µg/mouse and measured as 35, 101 and 171 µg/mouse for Low, Mid and High exposure, respectively. Body weight gain was lower than in controls at Mid and High exposure. The tidal volume was decreased with Low and Mid exposure on day 15. Increased genotoxicity was seen in bronchoalveolar lavage (BAL) fluid cells at Mid and High exposures. ROS production was substantially lower than for carbon black nanoparticles used as bench-mark, when normalised by mass. Yet if ROS of MoS2 was normalised by surface area, it was similar to that of carbon black, suggesting that a ROS contribution to the observed genotoxicity cannot be ruled out. In conclusion, effects on body weight gain and genotoxicity indicated that Low exposure (13 mg MoS2/m3, corresponding to 0.8 mg/m3 for an 8-hour working day) was a No Observed Adverse Effect Concentration (NOAEC,) while effects on respiratory function suggested this level as a Lowest Observed Adverse Effect Concentration (LOAEC).


Assuntos
Molibdênio , Fuligem , Humanos , Camundongos , Animais , Molibdênio/toxicidade , Espécies Reativas de Oxigênio , Aerossóis e Gotículas Respiratórios , Pulmão/patologia , Líquido da Lavagem Broncoalveolar/química , Aumento de Peso , Exposição por Inalação/efeitos adversos , Tamanho da Partícula
11.
Anal Bioanal Chem ; 415(1): 7-16, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36085421

RESUMO

While the exact health risks associated with nanoplastics are currently the focus of intense research, there is no doubt that humans are exposed to nanoplastics and that food could be a major source of exposure. Nanoplastics are released from plastic materials and articles used during food production, processing, storage, preparation, and serving. They are also likely to enter the food chain via contaminated water, air, and soil. However, very limited exposure data for risk assessment exists so far due to the lack of suitable analytical methods. Nanoplastic detection in food poses a great analytical challenge due to the complexity of plastics and food matrices as well as the small size and expectedly low concentration of the plastic particles. Multidetector field flow fractionation has emerged as a valuable analytical technique for nanoparticle separation over the last decades, and the first studies using the technique for analyzing nanoplastics in complex matrices are emerging. In combination with online detectors and offline analysis, multidetector field flow fractionation is a powerful platform for advanced characterization of nanoplastics in food by reducing sample complexity, which otherwise hampers the full potential of most analytical techniques. The focus of this article is to present the current state of the art of multidetector field flow fractionation for nanoplastic analysis and to discuss future trends and needs aiming at the analysis of nanoplastics in food.


Assuntos
Alimentos , Fracionamento por Campo e Fluxo , Nanopartículas , Poluentes Químicos da Água , Humanos , Fracionamento por Campo e Fluxo/métodos , Microplásticos/análise , Nanopartículas/análise , Tamanho da Partícula , Plásticos/análise , Poluentes Químicos da Água/análise , Análise de Alimentos
12.
NanoImpact ; 28: 100416, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995388

RESUMO

The widespread integration of engineered nanomaterials into consumer and industrial products creates new challenges and requires innovative approaches in terms of design, testing, reliability, and safety of nanotechnology. The aim of this review article is to give an overview of different product groups in which nanomaterials are present and outline their safety aspects for consumers. Here, release of nanomaterials and related analytical challenges and solutions as well as toxicological considerations, such as dose-metrics, are discussed. Additionally, the utilization of engineered nanomaterials as pharmaceuticals or nutraceuticals to deliver and release cargo molecules is covered. Furthermore, critical pathways for human exposure to nanomaterials, namely inhalation and ingestion, are discussed in the context of risk assessment. Analysis of NMs in food, innovative medicine or food contact materials is discussed. Specific focus is on the presence and release of nanomaterials, including whether nanomaterials can migrate from polymer nanocomposites used in food contact materials. With regard to the toxicology and toxicokinetics of nanomaterials, aspects of dose metrics of inhalation toxicity as well as ingestion toxicology and comparison between in vitro and in vivo conclusions are considered. The definition of dose descriptors to be applied in toxicological testing is emphasized. In relation to potential exposure from different products, opportunities arising from the use of advanced analytical techniques in more unique scenarios such as release of nanomaterials from medical devices such as orthopedic implants are addressed. Alongside higher product performance and complexity, further challenges regarding material characterization and safety, as well as acceptance by the general public are expected.


Assuntos
Nanotecnologia , Humanos , Reprodutibilidade dos Testes
13.
Environ Toxicol Pharmacol ; 95: 103939, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908641

RESUMO

The rate of translocation of ingested nanoparticles (NPs) and how the uptake is affected by a food matrix are key aspects of health risk assessment. In this study, female Sprague Dawley rats (N = 4/group) received 0, 1.4, or 13 mg of cerium oxide (CeO2 NM-212) NPs/rat/day by gavage or in a chocolate spread snack 5 days/week for 1 or 2 weeks followed by 2 weeks of recovery. A dose and time-dependent uptake in the liver and spleen of 0.1-0.3 and 0.004-0.005 parts per million (ng/mg) of the total administered dose was found, respectively. There was no statistically significant difference in cerium concentration in the liver or spleen after gavage compared to snack dosing. Microscopy revealed indications of necrotic changes in the liver and decreased cellularity in white pulp in the spleen. The snack provided precise administration and a more human-relevant exposure of NPs and could improve animal welfare as alternative to gavage.


Assuntos
Cério , Nanopartículas , Administração Oral , Animais , Cério/toxicidade , Feminino , Humanos , Ratos , Ratos Sprague-Dawley , Lanches , Distribuição Tecidual
14.
Nat Commun ; 13(1): 3798, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35778420

RESUMO

There is an urgent need to apply effective, data-driven approaches to reliably predict engineered nanomaterial (ENM) toxicity. Here we introduce a predictive computational framework based on the molecular and phenotypic effects of a large panel of ENMs across multiple in vitro and in vivo models. Our methodology allows for the grouping of ENMs based on multi-omics approaches combined with robust toxicity tests. Importantly, we identify mRNA-based toxicity markers and extensively replicate them in multiple independent datasets. We find that models based on combinations of omics-derived features and material intrinsic properties display significantly improved predictive accuracy as compared to physicochemical properties alone.


Assuntos
Nanoestruturas , Biomarcadores , Nanoestruturas/toxicidade , RNA Mensageiro/genética
15.
Nanomaterials (Basel) ; 12(3)2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35159862

RESUMO

In this study, we present a dissolution test system that allows for the testing of dissolution of nano- and micrometer size materials under highly controlled atmospheric composition (O2 and CO2), temperature, and pH. The system enables dissolution testing in physiological simulant fluids (here low-calcium Gamble's solution and phagolysosomal simulant fluid) and derivation of the temporal dissolution rates and reactivity of test materials. The system was validated considering the initial dissolution rates and dissolution profiles using eight different materials (γ-Al2O3, TiO2 (NM-104 coated with Al2O3 and glycerin), ZnO (NM-110 and NM-113, uncoated; and NM-111 coated with triethoxycaprylsilane), SiO2 (NM-200-synthetic amorphous silica), CeO2 (NM-212), and bentonite (NM-600) showing high intra-laboratory repeatability and robustness across repeated testing (I, II, and III) in triplicate (replicate 1, 2, and 3) in low-calcium Gamble's solution. A two-way repeated-measures ANOVA was used to determine the intra-laboratory repeatability in low-calcium Gamble's solution, where Al2O3 (p = 0.5277), ZnO (NM-110, p = 0.6578), ZnO (NM-111, p = 0.0627), and ZnO (NM-113, p = 0.4210) showed statistical identical repeatability across repeated testing (I, II, and III). The dissolution of the materials was also tested in phagolysosomal simulant fluid to demonstrate the applicability of the ATempH SBR system in other physiological fluids. We further show the uncertainty levels at which dissolution can be determined using the ATempH SBR system.

16.
Nanomaterials (Basel) ; 12(3)2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159911

RESUMO

Dissolution plays an important role on pulmonary toxicity of nanomaterials (NMs). The influence of contextual parameters on the results from dissolution testing needs to be identified to improve the generation of relevant and comparable data. This study investigated how pre-dispersions made in water, low-calcium Gamble's solution, phagolysosomal simulant fluid (PSF), and 0.05% bovine serum albumin (BSA) affected the dissolution of the Al2O3 coating on poorly soluble TiO2 also coated with glycerine (NM-104) and rapidly dissolving uncoated (NM-110) and triethoxycaprylsilane-coated ZnO (NM-111) NMs. Dissolution tests were undertaken and controlled in a stirred batch reactor using low-calcium Gamble's solution and phagolysosomal simulant fluid a surrogate for the lung-lining and macrophage phagolysosomal fluid, respectively. Pre-dispersion in 0.05% BSA-water showed a significant delay or decrease in the dissolution of Al2O3 after testing in both low-calcium Gamble's solution and PSF. Furthermore, use of the 0.05% BSA pre-dispersion medium influenced the dissolution of ZnO (NM-110) in PSF and ZnO (NM-111) in low-calcium Gamble's solution and PSF. We hypothesize that BSA forms a protective coating on the particles, which delays or lowers the short-term dissolution of the materials used in this study. Consequently, the type of pre-dispersion medium can affect the results in short-term dissolution testing.

17.
Nanomaterials (Basel) ; 12(4)2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-35215053

RESUMO

In single particle inductively coupled plasma mass spectrometry (spICP-MS), the transport efficiency is fundamental for the correct determination of both particle number concentration and size. In the present study, transport efficiency was systematically determined on three different days with six carefully characterised gold nanoparticle (AuNP) suspensions and in seven European and US expert laboratories using different ICP-MS instruments and spICP-MS software. Both particle size-(TES)-and particle frequency-(TEF)-methods were applied. The resulting transport efficiencies did not deviate much under ideal conditions. The TEF method however systematically resulted in lower transport efficiencies. The extent of this difference (0-300% rel. difference) depended largely on the choice and storage conditions of the nanoparticle suspensions used for the determination. The TES method is recommended when the principal measurement objective is particle size. If the main aim of the measurement is the determination of the particle number concentration, the TEF approach could be preferred as it might better account for particle losses in the sample introduction system.

18.
Drug Chem Toxicol ; 45(5): 2388-2397, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34455878

RESUMO

Some implantable medical devices contain silver. We aimed to assess at what amount implanted silver becomes toxic. Silver was elevated in bodily fluids and tissues surrounding silver-containing implants. Silver released from implants also distributes to blood and other tissues; there is evidence to suggest silver can pass the blood-brain-barrier. Silver can be deposited as nano-sized particles in various tissues. Such particles, in addition to silver, often contain other elements too, e.g., selenium and sulfur. Silver released from implants seems to stay in the body for long periods (years). Reported excretion pathways following implantation are urinary and fecal ones. Reported toxicological effects were virtually all local reactions surrounding the implants. Argyria is a blue-gray discoloration of the skin due to deposited silver granules. Localized argyria has been described after the implantation of acupuncture needles and silver-coated prostheses, although the presence of silver was tested only for and shown in the former. Other toxicological effects include local tissue reactivity and examples of neurotoxic and vascular effects. We did not include genotoxicity studies in the present publication as we recently evaluated silver to be genotoxic. Carcinogenicity studies were absent. We conclude that local toxicity of implanted silver can be foreseen in some situations.


Assuntos
Argiria , Selênio , Humanos , Próteses e Implantes , Prata/toxicidade , Pele
19.
J Agric Food Chem ; 69(34): 9979-9990, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34414767

RESUMO

In this work, we show the potential of single-particle inductively coupled plasma-mass spectrometry (spICP-MS) as a screening technique for detection of inorganic nanoparticles (NPs) that are expected to be present in food. We demonstrate that the spICP-MS/MS method in combination with collision/reaction cell gases and microsecond dwell times offers sensitive and interference-free detection of NPs. We present the steps that have to be considered to correctly assess the presence of NPs in food, for example, setting a suitable threshold for discriminating particle events from the baseline and analyzing a sufficient number of blank samples to minimize false-positive results. We applied the proposed screening approach to the sequential detection of NPs containing 8 selected elements that could be potentially present in 13 different food products. The highest mass concentrations of NPs (in the mg/g range) were found in the samples with food additives which are known to contain a fraction of NPs. The presence of (nano)particles in some of the investigated food samples was also confirmed by scanning electron microscopy analysis. Moreover, for the example of Al-containing NPs in Chinese noodles, we demonstrate that identification of the source of NPs with an unknown composition can be challenging when using only spICP-MS as particle mass concentration and size distribution can only be estimated by assuming a certain particle composition/shape. Other complementary techniques for particle characterization, such as electron microscopy in combination with elemental analysis, are therefore required.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Aditivos Alimentares , Tamanho da Partícula , Análise Espectral , Espectrometria de Massas em Tandem
20.
Food Control ; 120: 107550, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33536722

RESUMO

Titanium dioxide is a white colourant authorised as food additive E 171 in the EU, where it is used in a range of alimentary products. As these materials may contain a fraction of particulates with sizes below 100 nm and current EU regulation requires specific labelling of food ingredient to indicate the presence of engineered nanomaterials there is now a need for standardised and validated methods to appropriately size and quantify (nano)particles in food matrices. A single-particle inductively coupled plasma mass spectrometry (spICP-MS) screening method for the determination of the size distribution and concentration of titanium dioxide particles in sugar-coated confectionery and pristine food-grade titanium dioxide was developed. Special emphasis was placed on the sample preparation procedure, crucial to reproducibly disperse the particles before analysis. The transferability of this method was tested in an interlaboratory comparison study among seven experienced European food control and food research laboratories equipped with various ICP-MS instruments and using different software packages. The assessed measurands included the particle mean diameter, the most frequent diameter, the percentage of particles (in number) with a diameter below 100 nm, the particles' number concentration and a number of cumulative particle size distribution parameters (D0, D10, D50, D99.5, D99.8 and D100). The evaluated method's performance characteristics were, the within-laboratory precision, expressed as the relative repeatability standard deviation (RSDr), and the between-laboratory precision, expressed as the relative reproducibility standard deviation (RSDR). Transmission electron microscopy (TEM) was used as a confirmatory technique and served as the basis for bias estimation. The optimisation of the sample preparation step showed that when this protocol was applied to the relatively simple sample food matrices used in this study, bath sonication turned out to be sufficient to reach the highest, achievable degree of dispersed constituent particles. For the pristine material, probe sonication was required. Repeatability and reproducibility were below 10% and 25% respectively for most measurands except for the lower (D0) and the upper (D100) bound of the particle size distribution and the particle number concentration. The broader distribution of the lower and the upper bounds could be attributed to instrument-specific settings/setups (e.g. the timing parameters, the transport efficiency, type of mass-spectrometer) and software-specific data treatment algorithms. Differences in the upper bound were identified as being due to the non-harmonised application of the upper counting limit. Reporting D99.5 or D99.8 instead of the effectively largest particle diameter (D100) excluded isolated large particles and considerably improved the reproducibility. The particle number-concentration was found to be influenced by small differences in the sample preparation procedure. The comparison of these results with those obtained using electron microscopy showed that the mean and median particle diameter was, in all cases, higher when using spICP-MS. The main reason for this was the higher size detection limit for spICP-MS plus the fact that some of the analysed particles remained agglomerated/aggregated after sonication. Single particle ICP-MS is a powerful screening technique, which in many cases provides sufficient evidence to confirm the need to label a food product as containing (engineered) titanium dioxide nanomaterial according to the current EU regulatory requirements. The overall positive outcome of the method performance evaluation and the current lack of alternative standardised procedures, would indicate this method as being a promising candidate for a full validation study.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...